Nordic Climate Forum for Construction Efficient calculation of LCA and design optimization

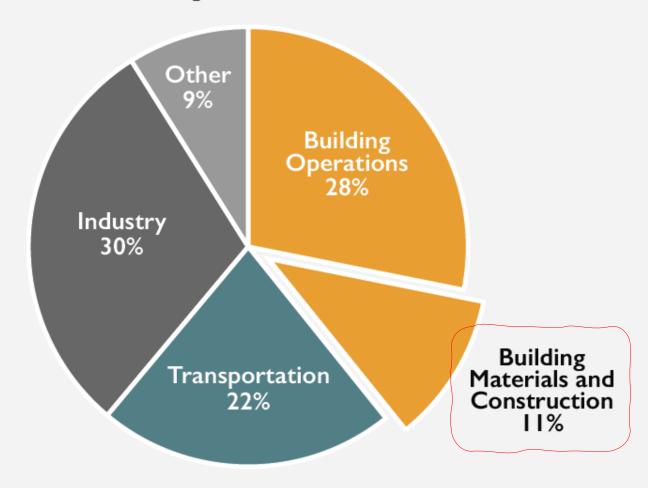
Knut Ramstad, Partner and CTO
Nordic Office of Architecture
Professor at NTNU

We are Nordic

400+
people

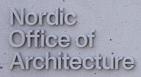
offices
Oslo
Reykjavík
Copenhagen
Aarhus
Aalborg

Nordic
Office of
Architecture
Norconsult



Global CO₂ Emission by Sector

Nordic Office of Architecture Source: © 2018 2030, Inc. / Architecture 2030. All Rights Reserved. Data Sources: UN Environment Global Status Report 2017; EIA International Energy Outlook 2017


The Challenge:

To track the CO2 bound in materials for our projects.

WITHOUT

The need to carry out complex, independent simulations (that require specialized expertise and software.)

The Solution:

Should help raise awareness in our teams
Should be accessible for all our architects
Should not require specialized knowledge
Should not require separate software
Should initiate competition among market areas and projects

Should result in lower emissions!

GOALS

OVERVIEW

APPROACH

STATUS

DeclAlre

Create a tool that:

- Provide an overview of CO2e in the portfolio over time.
- Ensure ease of use so that everyone can access it
- Utilise existing tools and knowledge
- Design the system to be expandable and adaptable over time.
- Comply with reporting requirements for ISO 14001
- Create a dashboard that everyone can follow.
- Share positive experiences and **insights** about Nordic for all employees and visitors.

A1 - A3 Product stage

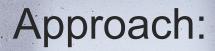
- Al Raw material extraction
- A2 Transport to manufacturing site
- A3 Manufacturing

A4 - A5 Construction stage

- A4 Transport to construction site
- A5 Installation / Assembly

B1 - B5 Use stage

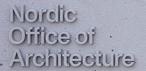
- **B1** Use
- **B2** Maintenance
- **B3** Repair
- **B4** Replacement
- **B5** Refurbishmen
- **B6** Operational energy use
- **B7** Operational water use


C1 - C4 End of life stage

- C1 Deconstruction & demolition
- C2 Transport
- C3 Waste processing
- C4 Disposal

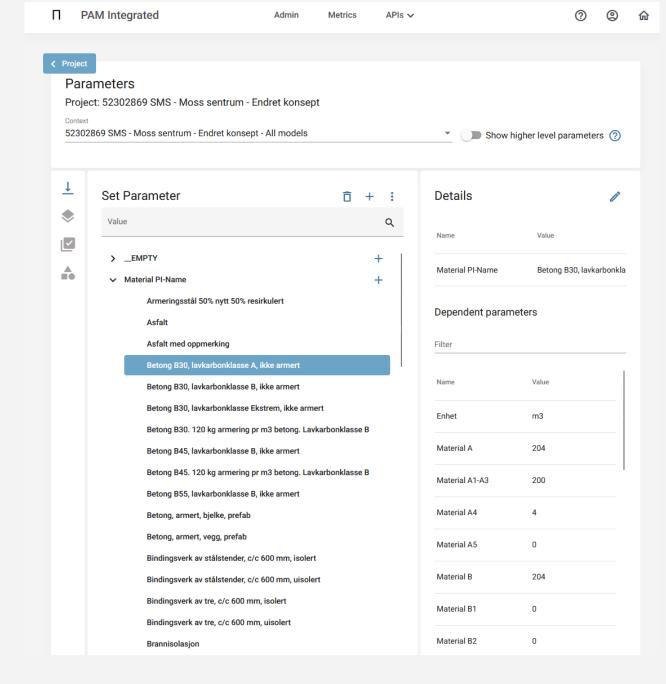
D - Benefits and loads beyond system boundary

Reuse, recovery and/or recycling potentials, expressed as net impacts and benefits


Image: Courtesy of OneClick LCA

- 1. Extract relevant greenhouse gas data into Autodesk Revit and enhance the model with this data and metadata.
- 2. Retrieve relevant data from Revit using the **simplest method possible** (One Button).
- 3. Present relevant data in a format that is **easy to** understand (e.g., on a screen).

1. Extract relevant greenhouse gas data into Revit and enhance the model with this data and metadata.



□ PAM Integrated
 Admin Metrics APIs →
 ② ② ☆

≺ Home

Administrative units NorconsultNorway			
Project number			
52302869			
Project name			
SMS - Moss sentrum - Endret konsept			
Project folder			
\\norconsultad.com\dfs\nor\oppdrag\Sa	ndvika\	523\02	\523
Coordinate system name			
Global Site name			
EPSG			
Cloud linking			
Parameters			
Disciplines			,
Akustikk (RIAKU)	Ī	=,	
Akustikk (RIAKU) Arkitektur (ARK)		=, =,	
, ,			
Arkitektur (ARK)		=,	
Arkitektur (ARK) BIM Koordinator (BIM)	Ô	=, =, =,	
Arkitektur (ARK) BIM Koordinator (BIM) Brann (RIBr) Elteknikk (RIE)		=, =, =, =,	
Arkitektur (ARK) BIM Koordinator (BIM) Brann (RIBr) Elteknikk (RIE)		5 5 5 5 5 5	
Arkitektur (ARK) BIM Koordinator (BIM) Brann (RIBr) Elteknikk (RIE) Grunn og bergarbeider (RIG)		5 5 5 5 5 5	

Autodesk Revit 2024.3 - Test co2 SusanneFlod.rvt - Sheet: 01 - OPPDRAGSINFORMASJON R ii 🔓 🗒 🚮 • ◆ • → • 🖶 👹 🖼 = • ∿ 🕫 A 🙈 • ◇ 🖭 🗓 🚟 • ₹ File Architecture Insert Annotate Analyze Massing & Site Collaborate View Manage Add-Ins Enscape™ Interoperability Tools Quantification Issues Content Catalog EvolveLAB ISY CAD NO-Tools NTI FOR REVIT Rhino.Inside RTV Tools JOTools >> 🗷 Quick Tools Info BIM-Folder Links FamilyBrowser Import Import Align Project Startup Updater Paraval Paraset Parameters View Add Sheet Clean Flatten Batch Select Setup Productivity × 🔝 (3D - SusanneFlod) 📑 01 - OPPDRAGSINFORMAS... 🗙 📲 Level 01 Level 02 Simplified estimation of clima... Working View_Plan_Level 01_(... Working View_Plan_Level 02_(... Sheet: OPPDRAGSINFORM ≠ 🚟 Edit Type Constraints 00 Admin Sorting Level 1 Simplified estimation of climate emissions based on materials Sorting Level 2 01 Assignment info Sorting Level 3 (data Graphics Volume CO2e CO2 e kg/m3 Revit material PI material Visibility/Graphic... Glass, isolerglass U 0,8, alle sjikt 20220 0,06 m³ 800 kg 12 546 kg/m³ 6 028,95 kg/m3 130,25 kg/m3 13,29 kg/m³ 0 kg/m³ 0 kg/m³ 0 kg/m³ 6 273,06 kg/m3 0 kg/m3 0 kg/m³ Text 20220 0,50 m³ Forelopig Metal - Aluminum Aluminium resirkulert 0,02 m³ 0 kg Responsible dept. Glass, sikkerhetsglass, isolerglass U 0,8, alle 0,47 m³ 0 kg **Identity Data** NO_GU-Gips 2,38 m³ 0 kg Gipsplate, vindsperre, vannavstøtende 를 실 지 Mineralull, trykkfast 72,88 m³ 0 kg Project Browser - Test_co2_SusanneFlod.rvt 15,48 m³ 0 kg NO Isolasjon - Luftlag 30,97 m³ 0 kg NO_Leca_02 Lettklinkerblokk Q Search NO_Metall - Stenderlag Bindingsverk av stålstender, c/c 600 mm, 21,51 m³ 0 kg Views (Sorting Levels 1 / 2) NO_Overflate - Innvendig Gipsplate + 00 ADMIN VIEWS - 01 WORK VIEWS 31,90 m³ 0 kg NO_Tegl - Murstein Teglforblending, fuget, normal stein (rød, - 00 3D Views Akryl 0,11 m³ 0 kg Plastic - White, Smooth 3D View: {3D} Keramiske fliser inkl lim og sementbasert fugemasse Ramme Bindingsverk av tre, c/c 600 mm, isolert Floor Plan: Working View_Plan_Level Tre - Tømmer 1,46 m³ 0 kg Konstruksjonstrevirke, justert Floor Plan: Working View_Plan_Level 1,82 m³ 0 kg Takpapp, bitumenbasert shingel Wood - Timber 1,15 m³ 0 kg Konstruksjonstrevirke, justert + 02 EXPORT VIEWS 192,51 m³ 900 kg 03 SHEET VIEWS + 00 3D Views + 10 Site + 30 Ceiling/Flooring + 40 Section/Elevation

View "Sheet: 01 - OPPDRAGSINFORMASJON" : Schedule Graphics : Schedule Graphics : Simplified estimation of climate emissions based on m, 🚺 ARK (Not Editable)

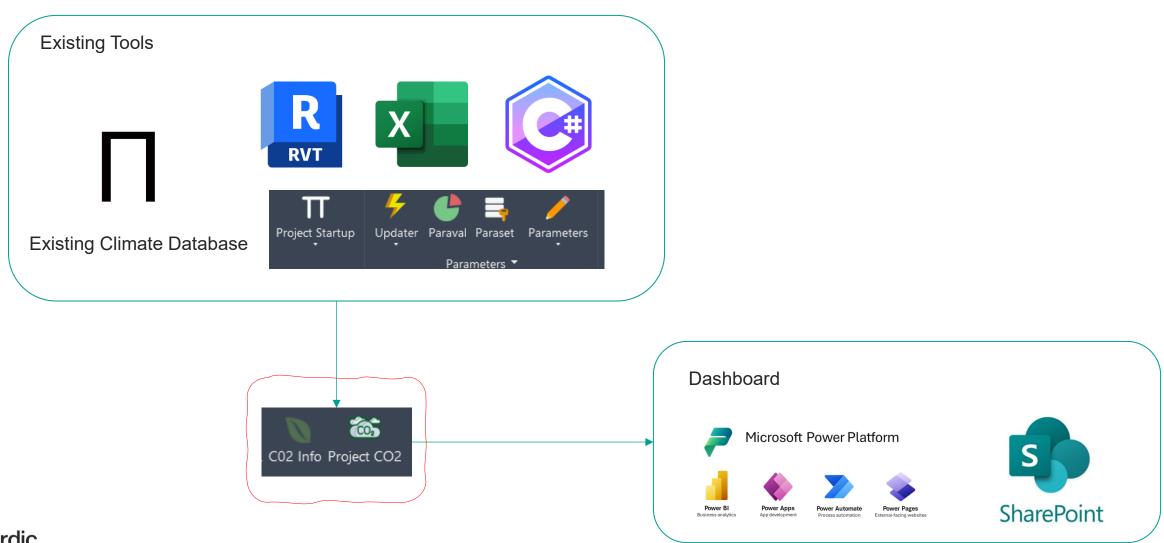
□Editable Only 🏋 🤻 🎉 🧗 🔭 📆

2. Retrieve relevant data from Revit using the **simplest method possible** (One Button).

Autodesk Revit 2024.3 - Test co2 SusanneFlod.rvt - Sheet: 01 - OPPDRAGSINFORMASJON ◆ In Land SusanneFlod → Transfer ? Tran File Architecture Insert Annotate Analyze Massing & Site Collaborate View Manage Add-Ins Enscape™ Interoperability Tools Quantification Issues Content Catalog EvolveLAB ISY CAD NO-Tools NTI FOR REVIT Rhino.Inside RTV Tools JOTools >> 🗷 Model Select ▼ Circulation Model Room & Area ▼ Opening Datum Work Plane × (3D - SusanneFlod) ■ 01 - OPPDRAGSINFORMAS... × Level 02 Simplified estimation of clima... erials in use Simplified estimation of climate emissions base Paraset Tasks ① ひ ⊕ Pimaledal Volume Update Sheet 0,31 m^c **↓** Set Parameter ✓ PI Parameter Material PI-Name Sheet: OPPDRAGSINFORM/ * 體 Edit Type 20220 0,06ms 800 kg 12.546 kg/ms 602896 kg/m² 130,25 kg/m² 13,29 kg/m² Automation V Constraints Search 20220 0,02 m^c 100 kg 3 16 1 kg/m^c ∫ Index ∨ Sorting Level 1 00 Admin Sorting Level 2 01 Assignment info Material Parameter Value 20220 2,38 ms 700 kg 308 kg/ms (O_GU-G(ps Olpsplate, ul nospere, uannaus triende Add Parameter Sorting Level 3 Operable Skylights 20220 72,88 m² 4 000 kg 55 kg/m² 2 20220 15,42 m⁴ 0 kg 0 kg/m⁴ Graphics NO_Bolasion - Lufling Operable Windows NO_Leca_DZ 20220 30.97 m⁴ 8 300 kg 218 kg/m Visibility/Graphic... Edit... Pan Finish Bindingswerk aus lâtste nder, o'd 600 mm, orsinket, lakkert, tynnplate Y (0_Metall - Stenderlag 20220 21,51 m⁴ 200 kg 7 kg/m⁴ 0,28 kg/m² Tracker 10_Me tall - SIÃI - S460. 0/0 L/011 SH 236517 Phase - Demo Text NO_Oversials - Innuendig Settings Phase - Exist Forelopig NO_Tegi - Mus bin 20220 31,50 m^c 16 000 472 kg/m^c Phase - New 20220 0,07 m^c 2 100 kg 30 439 kg/m^c Responsible dept. Plastic - White, Smooth Phase - Temporary **Identity Data** a el XI Phase-Demo Project Browser - Test_co2_SusanneFlod.rvt 20220 1,59 m² 27 800 13 82 1 kg/m² Tak - Wanes is in Sori Phase-Demo 20220 1,45m^c 400 kg 247 kg/m^c Construisions terride il us ler re - Temmer Q Search Phase-Exist 20220 1,82 m^c 26 800 13 82 1 kg/m^c Phase-Exist Views (Sorting Levels 1 / 2) ons kulisions te uirie , lus lei + 00 ADMIN VIEWS Phase-Temp Grand lotal - 01 WORK VIEWS Phase-Temp - 00 3D Views 3D View: {3D} BTA: 264,55 Plastic Akryl Plastic - White, Smc Akryl Floor Plan: Working View_Plan_Level Plexiglass Floor Plan: Working View_Plan_Level + 40 Section/Elevation Poche + 02 EXPORT VIEWS Poche Stål, varmforsinket, lakker Y - 03 SHEET VIEWS Polyvinyl Chloride, + 00 3D Views + 10 Site Porslin Keramiske fliser inkl lim o + 20 Plans Ramme Bindingsverk av tre, c/c 6(∨ + 30 Ceiling/Flooring Red + 40 Section/Elevation → 上:0 🗏 皐 Main Model

MARK (Not Editable)

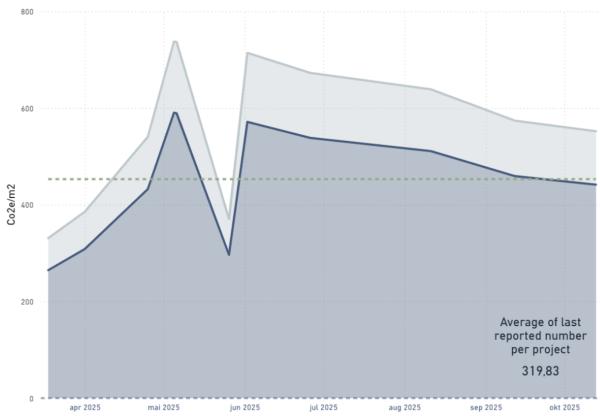
□Editable Only 🥰 🍕 🖟 🧗 🔭 📆


Nordic Office of Architecture

Click to select, TAB for alternates, CTRL adds, SHIFT unselects

3. Present relevant data in an easily understandable format (Screen).

What's behind?



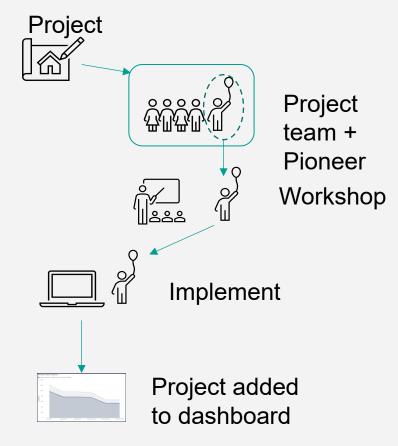
NCT - NORDIC CARBON TRACKER

MONTHLY PROJECT PROGRESS

ALL PROJECTS IN REPORT

PROJECT NUMBER ▼	NAME	Last C02e/m2 (per project)
320104	Sikkerhetspost Valen Sjukehus	221,54
110000	SUS 2023	441,60
110000	SUS BT2 Bygg 76	511,00
1020607	Lilleakerveien 41	296,36

NORDIC OVERALL


452,95 Average Kg CO2e per m2...

Status Q4 2025

- Training has been provided to key personnel.
- Projects are currently mapping materials.
- Final reporting is missing for some projects SCALATION.

Prosjekter over 5000m2	Type bygg	Størrelse (ca)	Fase	PL	Ressursperson NCT (forslag)	Status rapportering	Status opplæring
Oslo Horisont, KLP	Kontor/Næring	85 000 m2	Reguleringsfase / ill.prosjekt	Jonathan	Zuzanna	Mangler	Ja
Schweigaards gt. 41-51	Kontor/Næring	23 200 m2	Reguleringsfase / ill.prosjekt	Line	Zuzanna	Mangler	Ja
Kjelsåsveien 161	Bolig/Næring	23 400 m2	Reguleringsfase / ill.prosjekt	Simon	Henriette	Mangler	Ja
Sørkedalsv. 150	Bolig	13 500 m2	Reguleringsfase / skisseprosjekt	Isaac	Isaac	Mangler	
Østensjøv. 40-44	Bolig/Næring	43 000 m2	Reguleringsfase / ill.prosjekt	Line	Isaac	Mangler	Ja
Laksevåg verft, detaljregulering	Bolig/Kontor/Næring	150 000 m2	Reguleringsfase / ill.prosjekt	Line	Isaac	Mangler	Ja
Fornebu Sør	Bolig/Næring	32 000 m2	Forprosjekt (oppstart mai/juni 25)	Geir	Anette	Mangler	Ja
Haslevangen 15	Kontor/Næring	17 400 m2	Forprosjekt (oppstart det.prosj. høsten 25)	Stijn	Kristine S	Mangler	Ja
Molobyen B6	Kontor/Næring	11 600 m2	Mulighetsstudie	Isaac	Isaac	Mangler	
Sikkerhetspost Valen Sjukehus	Sykehus	1430 m2	Forprosjekt	Anders L	Søren B	Mangler	Ja
Lilleakerveien 41	Bolig/Kontor/Næring	14800 m2	Revidert skisseprosjekt	Anette	Erik Ø	Levert	Ja
SUS2	Sykehus	101000 m2	Forprosjekt	Florian	Kristjan	Må rettes	Ja

deciAire

is a demonstration of how Al and machine learning can enhance the ability of designers to address increasingly complex challenges.

The EPD* Challenge:

EPDs are **standardized** according to EN 15804, but the **presentation varies** between suppliers and databases.

Why don't we let AI do the work?

*Environmental Product Declaration

C epd-norge

Environmental product declaration

Pilot II, Jotun Paints (Malaysia) Sdn. Bhd.

Owner of the declaration: Jotun A/S **₫ JOTUN**

This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR BU PCR Part 8 for coatings with organic binders

Program operator: The Norwegian EPD Foundatio NEPD-7161-6560-EN NEPD-7161-6560-EN Issue date: 26.07.2024

Valid to: 26.07.2029

EPD°

Build on us.

KNAUFINSULATION

Environmental performance

Potential environmental impacts: Im¹ of glass mineral wool Kraud Insulation unfaced rolls with a density of 11kg/m3 to 12.01kg/m3 and a thermal conductivity of 0.042W/mK @23°C (AU) and a R-value of 1.30 m²K/W (0.059W/mK @15°C (RZ) and the R-value of 1.40 m²K/W with a thickness of 55 mm.

				ENVIRONME	NTAL IMPACTS						
Parameter	Unit	A1-3***	A4	AS	81-87	C1	CZ	C3	C4	D++	
GWP-fossit.	kg CO _y eq.	9.06E-01	9.69E-02	3.126-02	0.00E+00	0.00E+00	2.186-03	0.00€+00	1.06E-02	-6.60E-02	
GMP-biogenic	kg COveq.	-2.36E-01	2.626-03	1.436-01	0.006+00	0.00E+00	1.436-04	0.00€+00	1.176-01	0.005-00	
GWP-tutuc	kg COves.	1.536-03	2.51E-06	3.356-05	0.00E+00	0.00E+00	5.856-08	0.00€+00	4.63E-05	-3.94E-06	
GWP-total	kg CO ₂ eq.	6.726-01	9.95E-02	1.74E-01	0.00E+00	0.00E+00	2.33E-03	0.00€+00	1.27E-01	-6.60E-02	
COP	kg CFC 11 eq.	1.066-12	5.87E-15	3.64E-14	0.00E+00	0.000+00	2.236-16	0.00€+00	6.09E-15	-4.06E-13	
AP	mal H"eq.	4.116-03	1.966-03	1.486-04	0.00€+00	0.00E+00	3.306-06	0.00€+00	7.89E-05	-2.778-04	
EP-treshwater	kg Peq.	3.55E-06	1.526-08	8.126-08	0.00E+00	0.000+00	3.43E-10	0.00€+00	2.27E-07	-2.47E-08	
EP-marine	kg N eq.	1.546-03	4.926-04	4.87E-05	0.00E+00	0.00E+00	1.418-06	0.00E+00	2.18E-05	-7.78E-05	
EP-terrestrial	mol N eq.	1.66E-02	5.39E-03	5.51E-04	0.00E+00	0.00E+00	1.55E-05	0.00E+00	2.32E-04	-8.51E-04	
POCP	kgNMVOCes.	2.776-03	1.406-03	1.065-04	0.00€+00	0.00E+00	4.276-06	0.00€+00	6.35E-05	-2.13E-04	
P-minerals&metals*	kg Sh eq.	3.39E-07	1.62E-09	7.13E-09	0.00E+00	0.00E+00	2.94E-11	0.00E+00	1.10E-09	-2.71E-09	
ACP-fossit*	MI	1.246+01	1.21E+00	3.276-01	0.000+00	0.00E+00	2.956-02	0.00€+00	1.436-01	-9.26E-01	
WDP-	m ^a	4.05E-02	2.40E-04	1.52E-02	0.00E+00	0.00E+00	8.39E-06	0.00E+00	8.16E-04	-1.66E-02	
	GMD-food a Global	Marries Dosertal	facilitate GAD.	hiosenic w Global I	Warming Dotacria	Nonenir (WD.)	olor # Global Was	mine Dotavited Inc	of use and land or	a charger CCC s	

ENVIRONMENTAL PRODUCT

DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO

DAFA

ENVIRONMENTAL IMPACT DATA

ORE ENVIR	ONMEN	TALI	MPAC	T INDI	CATO	RS - E	N 158	04+A	2, PER										
Impact category	Unit	A1	A2	A3	A1.A3	Δŧ	A5	B1	BS	83	84	85	94	87	C1	CS	C3	C4	D
OWP - SMAP	kg COse	7:096-01	7,895-02	-5.79E-02	7,316-01	T,206-02	3.435-01	MHD	MND	8890	MNO	MND	MNO	5010	0,00€=00	2,475-00	8,476-01	0.00E+00	7,105-0
OWP - fossil	kg 00je	8.345-01	7,895-02	4,945-02	9.505-01	7,255.02	2,335-31	MND	MND	MID	MND	MND	MND	MND	0.000+00	2,475-20	7,220-01	0.000+00	7,800-0
DWP - biogenio	4g 00ja	-1,286-01	0,000400	-1,076-01	433641	0,005-00	1,075-01	MHD	MND	880	MND	AND	MND	5910	0,004-00	0,006+00	1,366-01	6,006450	0,006+00
DWF-LULUS	kg COve	9.55E-04	3,195-09	2,875.04	1,296.03	2,885.05	3,580-06	MND	MND	1000	MHO	MND	MNO	MNO	0.00E-00	9,878.07	6,136-06	8.006+00	-1,005-0
Osone depletion pet	Ng CFC.ue	1,448.07	1,836.08	1,435.00	1,666.07	1,678.08	0.098-13	MIC	MND	100	MND.	MND	MND	MNO				0.006+00	
Acidfication potential	muliti's	9.31E-03	2,240-64	2,545-04	9.795-03	2,045.04	6,810-05	MHD	MND	MNO	MHD	MND	MND	MHD	0,006-00	7,016-08	1,676-04	1.006+00	4.100-0
EP-feebwater*	ag Pa	4,046-05	5,636-67	3,746-00	4450	5,146-07	1,076-07	MND	MND	MND	MND	MND	MND	5010	0,006-00	1,786-08	1,696-07	0,006+00	4376-0
T-marine	bg No	8.58E.04	4,475.05	1,175.04	1,000.03	4,080.09	2,965.00	MND	MND	MIND	MNO	MNE	MNO.	MNO	0,00E-00	1,400.00	7,788-05	0.006+00	J.315-0
EP-terresidal	rest Nin	6.66E-03	4,075.04	7,886-04	9.938.03	4,555.04	3,076-04	MND	MND	MND	MHO	MND	MND	NH42	0,006-00	1,006.08	8.000.04	0.006+00	4,876.0
POCP (Sweet)*	Ng.	3.37E-03	1,915-04	1,855-04	2.74E-03	1,745.04	7,695-05	MNO	MND	MIC	MND	MND	MNO	MNO	0,000-00	5,970,48	1,940-04	1.000+00	2415-0
ADS'-minerals & metals"	iq Ste	1,185-05	2,650-67	3,076-07	1,245-00	2,666-07	4,305-01	MND	MND	MND	MND	MND	MND	MNO	0.00E-00	0.935.69	6,500-00	0.00E+00	-1,315-0

Impact category	Unit	A1	12	A3	A1-A3	At	A5	B1	B5	83	B4	85	94	87	C1	CS	C3	C4	D
Renne. PRR as energy*	160	5,046+00	1,716-62	7,296-01	3,796-30	1,586-02	2,836-03	MNE	MND	BRID	MHID	AMID	MND	5943	0.006-00	5,366-64	5,256-61	0,006=00	3,246=
Renne, PER as material	NU	1,176+00	0,000,00	8,316-01	2,106-00	0,006+00	4,216-01	MND	MND	MIND	MIND	MND	MNO	MAD	0,006-00	0,006+00	-1,17E-00	0,006+00	1,506-0
Total use of renew, PER	162	4,205-00	1,716.42	1,865+00	6.886-00	1,565-02	4.266.01	MND	MID	NND	MHD	MND	MND	MNO	0.00€~00	9,385-04	-1.18E+00	0.000-00	-2,600=
Non-re. PER as energy	962	9,890-00	1.175+00	7,106-81	1,180-01	1,075+00	7,896-82	MHD	MND	BRID	MHD	MND	MNO	9940	0,00E+00	3,668.62	1,340-01	0,000-00	-8.01E=
Non-re. PER as material	MU	7,075+00	8.0002+00	1,545-02	7,110+00	0.000-00	-3.545-02	MHD	MND	SHID	MND	MND	MND	MNO	0.00E+00	0.000:+00	-7.07E+00	0.000+00	8.305-0
Total use of non-re. PSR	867	1,095+01							MND	MIND	MHD	AMD					-8,94E+00		
Secondary nuteriors	142	1,006-00	4,000-64	4,106-02	5,206-02	3,005-04	7,800-05	MHD	MND	MIND	MND	MND	MNO	MND	1,006-00	1,256-05	1,196-64	0,006+00	1,852-0

One Click LCA Created with One Click LCA

EPD

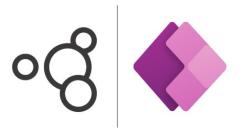
ENVIRONMENTAL PRODUCT DECLARATION (EPD) FOR ANODISED ALUMINIUM PROFILE IMPLEMENTED WITH REDUXA BILLET

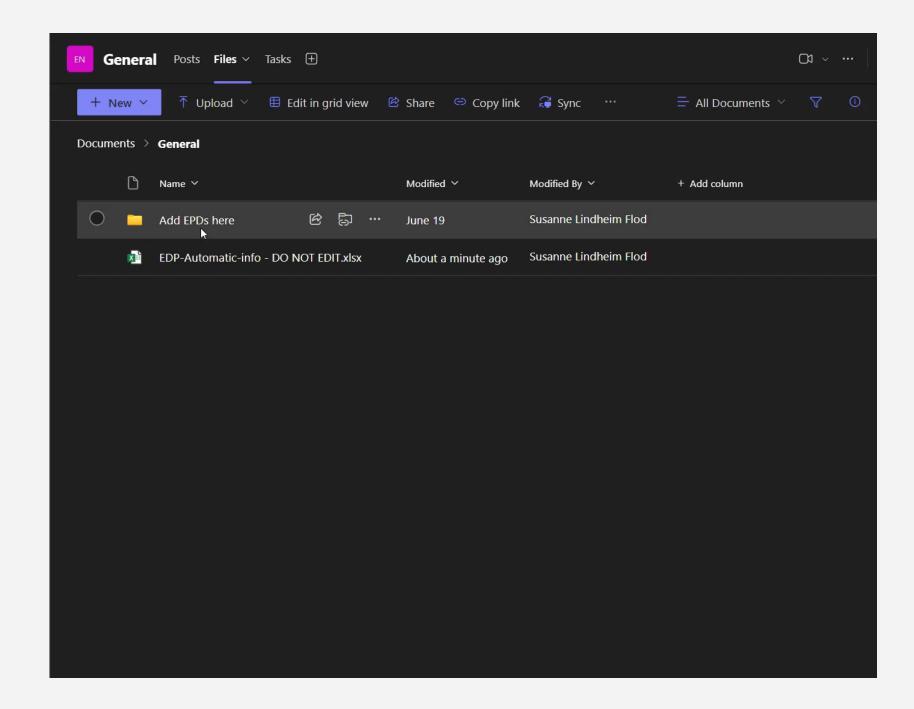
Company: Hydro Extrusion Norway A/S - Gaustadwegen 136, 2240 Magnor, Norw Programme operator: The international EPD ® System – c/o EPD International AI 27 Stockholm Sweden - www.environdec.com PCR: 2019-14 Construction products, version 1.3.1.

PCR: 2019:14 Construction products, vs Geographical scope: Europe EPD registration number: 5-P-11887 Date of publication (issue): 2024-05-14 Date of validity: 2029-02-26

3.5 PARAMETERS DESCRIBING THE ENVIRONMENTAL IMPACT ACCORDING EN15804+A2

The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding threshold values, safety


Table 7 Impacts of anodised profile implemented with REDUXA billet. Method	EN15801+A2						
		nented with th	ie REDUXA bil	let. Method E			
Core impacts indicators							
Climate Change - total - GWPtot [kg CO2 eq.]	6,58E+00	5,06E-02	0,00E+00	1,91E-02	1,78E-02	5,83E-04	-7,49E+00
Climate Change, fossil - GWPf [kg CO2 eq.]	6,53E+00	5,09E-02	0,00E+00	1,92E-02	1,77E-02	6,01E-04	-7,48E+00
Climate Change, biogenic - GWPb [kg CO2 eq.] (1)	3,95E-02	0,00E+00	0,00E+00	0,00E+00	1,54E-04	-2,00E-05	-1,57E-02
Climate Change, land use and land use change - GWPluc [kg CO2 eq.]	8,90E-03	4,69E-04	0,00E+00	1,77E-04	6,23E-06	1,87E-06	-1,30E-03
Ozone depletion - ODP [kg CFC-11 eq.]	4,84E-07	4,43E-15	0,00E+00	1,67E-15	3,07E-13	1,53E-15	-5,61E-11
Acidification - AP [Mole of H+ eq.]	2,85E-02	3,20E-04	0,00E+00	1,21E-04	4,18E-05	4,26E-06	-4,35E-02
Eutrophication, freshwater - Epfr [kg P eq.]*	5,62E-05	1,85E-07	0,00E+00	6,97E-08	6,42E-08	1,21E-09	-3,32E-06
Eutrophication, marine - EPmar [kg N eq.]	4,94E-03	1,57E-04	0,00E+00	5,94E-05	1,05E-05	1,10E-06	-6,26E-03
Eutrophication, terrestrial - Epter [Mole of N eq.]	5,47E-02	1,74E-03	0,00E+00	6,58E-04	1,11E-04	1,21E-05	-6,84E-02
Photochemical ozone formation, human health - POCP [kg NMVOC eq.]	1,52E-02	3,03E-04	0,00E+00	1,14E-04	2,79E-05	3,32E-06	-1,89E-02
Resource use, mineral and metals - ADPe [kg Sb eq.]**	6,18E-06	3,27E-09	0,00E+00	1,23E-09	2,61E-09	2,77E-11	-1,68E-06
Resource use, fossils - ADPf [MJ]**	7,59E+01	6,88E-01	0,00E+00	2,60E-01	3,59E-01	8,00E-03	-9,17E+01
Water use - WU [m ⁵ world equiv.]**	7,16E-01	5,84E-04	0,00E+00	2,20E-04	3,71E-03	6,60E-05	-1,11E+00
	A1-A3						
GWP-GHG [kg CO2 eq.]***	6,54E+00	5,13E-02	0,00E+00	1,94E-02	1,77E-02	6,03E-04	-7,48E+00
* The results in kg P eq. can be obtained by dividing the results in kg PD4							



Solution: POWER AUTOMATE

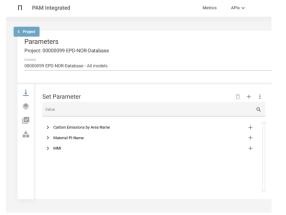
Nordic Office of Architecture

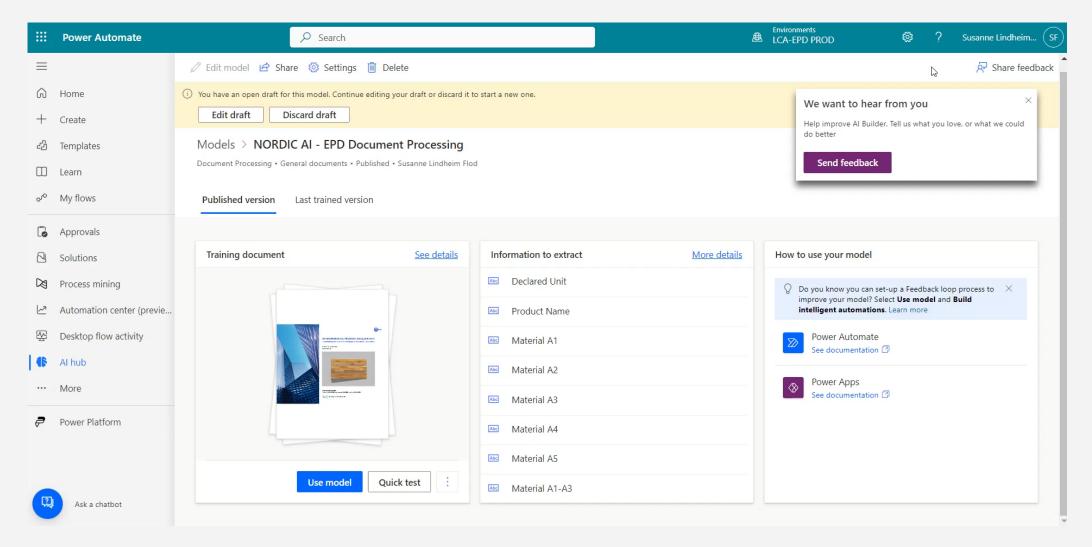
Nordic Office of Architecture

THE INTERNATIONAL EPO® SYSTEM

Upload EPD to project Teams folder

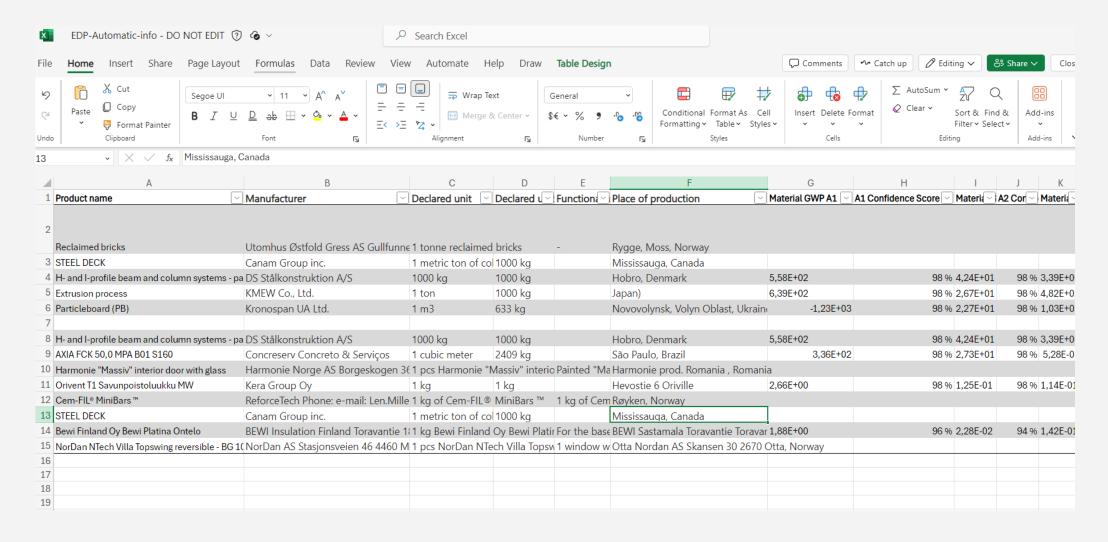
Nordic Office of Architecture Power Automate flow runs with built in AI component


Excel is updated with data


Data can be
uploaded to PAM

Use PI to make
data available in

Revit



Nordic Office of Architecture

NCT is a tool designed to raise awareness and assist non-experts in reducing material-bound carbon in their projects easily

Knut Ramstad kr@nordicarch.com

//nordicarch.com

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement no. 101056973

Towards automated building LCA calculation

Tuija Pakkanen, Petr Hradil, Rita Lavikka VTT Technical Research Centre of Finland

Nordic Climate Forum for Construction 2025

BIM-based automation of LCA calculation

Answering the question "what is the life-cycle Global Warming Potential (GWP) of the building?"

→ Still requires manual expert work.

But what if we ask a different question: "Is the life-cycle GWP lower than the limit?"

This answer may be obtained automatically already now.

Without large demands on the architect.

06/11/2025 VTT – beyond the obvious

Finnish Building Act 2025: BIM-Driven LCA for Climate Compliance

- The new Finnish Building Act (2025)
 - A climate declaration and declaration of products for new buildings (2026)
 - The limits for the buildings' carbon footprint will be introduced in the following years
 - Building permits to be applied with IFC format (IFC 4.0.2.1) if the design is in BIM
- The new requirements may burden the design offices, especially the small ones, without dedicated LCA experts and access to the relevant tools
- BIM-based automation of LCA calculation.
 - Enables early-stage carbon footprint checks without burdening architects
 - Reduces time and cost in design iterations
 - Enhances transparency and traceability for regulators and clients

06/11/2025 VTT – beyond the obvious 3

Requirements for BIM-based LCA

- Quantity take-off from BIM
 - BIM shall be prepared with the sufficient detail, entities that are not part of the LCA calculation shall be either filtered out or marked
 - BIM guidelines, templates, export filters, examples
- Matching products (materials) from BIM to the LCA database
 - Products (materials) names or IDs shall be assigned to the entities and matching the identifiers from LCA the database
 - Products (materials) classification
 - LCA databases
- Calculation, reporting, checking life-cycle GWP against the limit
 - LCA methodologies
 - LCA tools

Building legislation in Finland

Foot	orint	Building	Building site
A1-3	Manufacturing	kgCO ₂ e/m²,a	kgCO ₂ e/m²,a
A4	Transport	kgCO ₂ e/m²,a	kgCO ₂ e/m²,a
A5	Construction	kgCO ₂ e/m²,a	kgCO e/m²,a
B4	Replacement	kgCO ₂ e/m²,a	2,0 y²,a
В6	Use of energy	kgCO ₂ e/m ² ,a	2e/m²,a
C1	Deconstruction	kgCO	kgCO ₂ e/m²,a
C2	Transport	k K9,a	kgCO ₂ e/m²,a
C3	Waste processing	kgC ₂ e/m ² ,a	kgCO ₂ e/m²,a
C4	Disposal	kgCO ₂ e/m²,a	kgCO ₂ e/m²,a
Total o	carbon footprint	kgCO ₂ e/m²,a	kgCO₂e/m²,a

Handprint	Building	Building site
D1-6 Carbon handprint	kgCO ₂ e/m ² ,a	kgCO ₂ e/m ² ,a

This value is limited

- The new Building Act entered into force in 2025
- Construction permit applications shall include a climate declaration and a declaration of products (materials) in 2026.
- Construction permits to be applied with IFC format (IFC 4.0.2.1) if the design is in BIM.

Supporting legislation and information sources

- Decree on climate declaration
- Decree on products declaration
- National CO₂ database
- National BIM requirements
- Limit values of carbon footprint

Finnish construction emissions database

		Material or product	Building
A1-3	Manufacturing	kgCO ₂ e/kg, /m ³ , /m ² , /unit	kgCO₂e/m² ←
A4	Transport	kgCO ₂ e/ton,km	or kgCO ₂ e/m ²
A5	Construction		2e/m²
B4	Replacement	kgCO ₂ e/kg, /m ³ , /m ² , /unit	2e/m² ←
B6	Use of energy	026	kgCO₂e/kWh
C1	Deconstruction	400	kgCO ₂ e/m ²
C2	Transport	kgCO ₂ e	or kgCO ₂ e/m²
C3	Waste processing	kgCO ₂ e/kg, /m ³ , /m ² , /unit	
C4	Disposal		kgCO ₂ e/m ²

	Material or product	Building
D1-6 Carbon handprint	kgCO ₂ e/kg, /m ³ , /m ² , /unit	

Required information

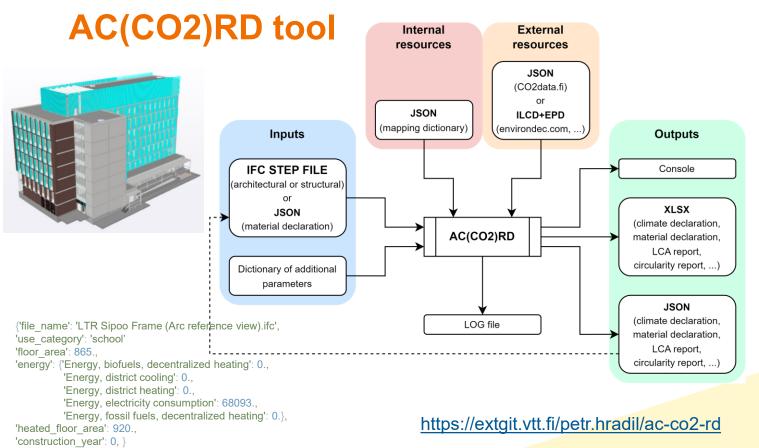
- Building floor area
- Building energy cons. - Materials identification
- Products identification
- Relevant quantities

Rakentamisen päästötietokanta | CO2data.fi/rakentaminen

Emissions database for construction

Building services

Infrarakentamisen päästötietokanta | CO2data.fi/infra


https://www.co2data.fi/rakentaminen/#en

A proof-of-concept tool to study automated conservative estimation of the environmental impact from the IFC model

06/11/2025 VTT – beyond the obvious 7

WP7 IFC case building original						
			the calculation. (836x IfcBea (195x IfcMechanicalFastener)			
Total volume Elements		523.9 1744.0	7 m3			
GWP A1-A3 GWP A4			5 tCO2e 5 tCO2e			
GWP B6 GWP C1		0.0 0.0) tCO2e) tCO2e			
GWP C2 GWP C3			tCO2e			
GWP C4						
GWP D1	:	-105.1	l tCO2e			

Name	Mass	Volume
CONCRETE/Concrete_Undefined	238.365	99.31874
CONCRETE/K30-2	199.6575	83.19063
CONCRETE/K40-1	45.16389	18.81829
MISCELLANEOUS/Mineraalivilla_kova	31.22608	312.2608
STEEL/S350GD+Z	35.70369	4.548241
STEEL/S355J0	2.919739	0.371941
STEEL/S355J2	6.69243	0.852747
STEEL/S355J2H	8.342612	1.069719
STEEL/S420MH	26.79131	3.459136

```
"Title": "AC(CO2)RD LCA REPORT".
"Date": "2023-06-09"
"Name": "LTR Sipoo Frame (Arc reference view)",
"DesignLife": {
 "Value": 50.0,
 "Unit": "vears"
"UseCategories": [
    "UseCategoryName": "school",
    "FloorArea": {
     "Value": 865.0,
      "Unit": "m2"
    "HeatedFloorArea": {
     "Value": 865.0,
      "Unit": "m2"
```


Quality of model data

- Missing material identification
 - The highest CO₂ material will be selected from the database based on the element type (always conservative)
- Missing quantities
 - Volume of the entity bounding box will be used (always conservative)
- Material name not matching records in the database
 - Mapping dictionary is created and regularly updated (provisional solution)
- Missing entities
 - Not checked yet

Feedback to the designer

- Number of IFC entities included in the assessment
- Number of entities without quantities calculated from the bounding box
- Number of entities without quantities ignored
- Number of entities without materials assumed conservative material
- List of unknown materials and ignored entities
- Model quality (not yet implemented):

Quantities index

% of entities with quantities

+ half of entities calculated from the bounding box

Materials index

% of production CO₂ (A1-A3) of known materials

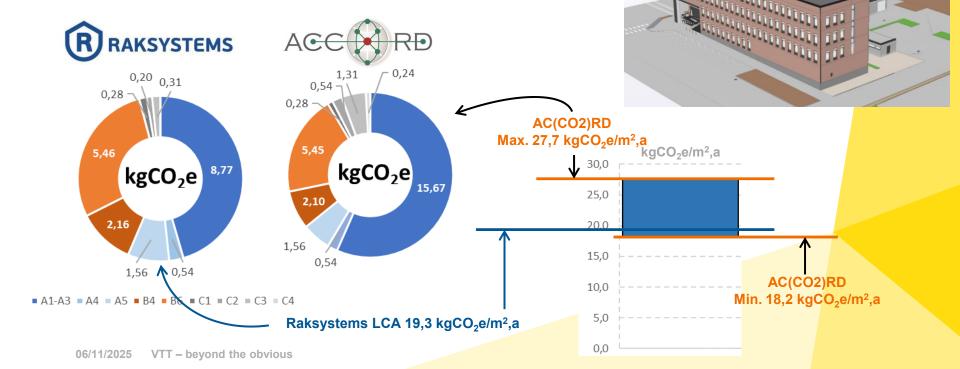
Example outputs

Carbon footprint: 13,3 kgCO₂e/m²,a Quantities index: 100% Materials index: 100% (Tekla Structures)

Carbon footprint: 27,7 kgCO₂e/m²,a Quantities index: 100% Materials index: 36% (Archicad)

Carbon footprint: 45,3 kgCO₂e/m²,a Quantities index: 99% Materials index: 19% (Revit)

Carbon footprint: 109 kgCO₂e/m²,a Quantities index: 91% Materials index: 38% (Archicad)



Validation

Courthouse in Pori, Finland

Net floor area: 5419 m² Year of construction: 2024 Assessment period: 50 years

Transferability across countries

- AC(CO₂)RD is a proof-of-concept tool to study automated conservative estimation of the environmental impact of the IFC model
- It is adjusted to the requirements of the new Finnish regulations
- Nordic countries share similar BIM maturity and regulatory ambitions BIM for LCA
 - Differences in LCA scope and data availability across countries.
 - Need for unified BIM-LCA standards and shared databases
 - Joint Nordic initiative for harmonised digital permitting and LCA validation!?
- Plans to link this tool to the machine-readable regulation limiting the carbon footprint of the building
- Ongoing discussion on the real-world implementation of such a concept with partners of the ACCORD project: Solibri, Cloud Permit and Future Insight

Thank you!

For more information, please contact the project coordinator

Rita.Lavikka@vtt.fi

Follow us

Access our website

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement no. 101056973

bey^Ond the obvious

Bevar mere.

Preserve More: Future homes in the existing building stock

Johanne Mose Entwistle Head of Secretariat Bevar Mere Partner in AART architects

How many more people will there be in Denmark by 2040?

280.000

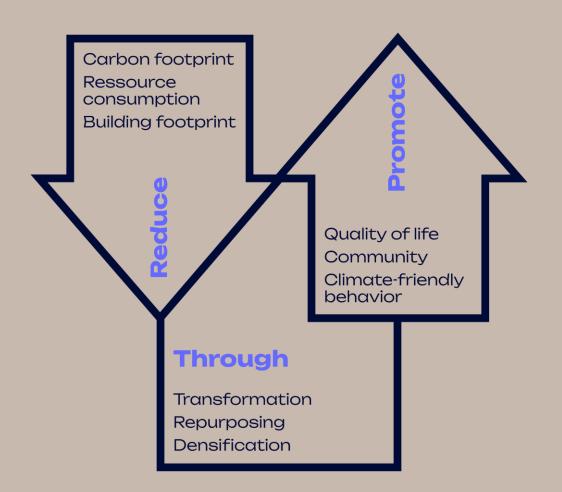
How many homes are needed?

100.000 - 150.000

How many homes can be created from buildings that exist today?

40.000 - 70.000

Who is behind Bevar Mere/Preserve More?



Purpose and vision

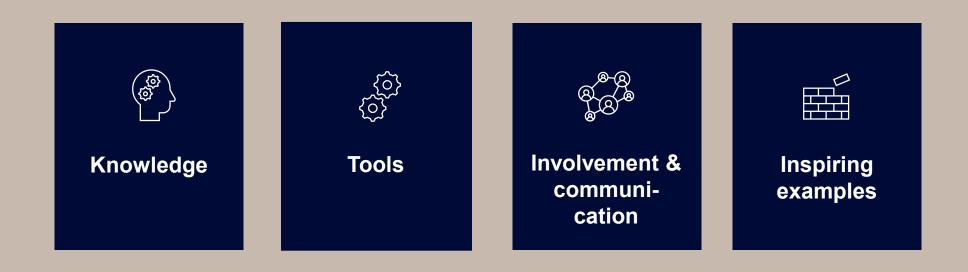
How do we create the sustainable homes and housing environments of the future in the buildings we already have

We want to promote a change in behavior among professionals and the general population towards transforming and repurposing with a focus on community, quality of life, climate, and resources

Which building typologies do we focus on?

Single family houses

Roof top housing


Social housing

Commercial, office, and public service buildings

What is at the core of the initiative?

Projects

07
Tools

Opbevar // Preserve Up

LCA-plan // LCA - plan

Tættere sammen // Close together

Bevar eller Forklar // Preserve or explain

Del hus i Kommunen // Share house in the municipality

En trin-for-trin guide // Step-by-step guide to transformation

Mere. Transformation. Sammen. // More. Transformation. Together.

10
Knowledge projects

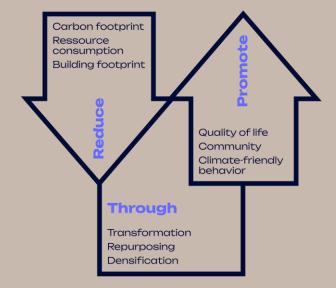
Vi har boligerne // We have the homes

Mod Nye Højder // Towards new heights

Internationale erfaringer // International experiences

Udfoldning af businesscasen // Unfolding the business case

Empty nesters' flyttemønstre // Empty nesters' moving patterns


Bevar, del og bo flere sammen // Preserve, share and live more people together

Bæredygtig etablering af tagboliger // Sustainable construction of rooftop dwellings

Investeringscasen for transformation // The investment case for transformation

Transformation af landbrugsejendomme // Transformation of farm properties

Transformationskapacitet i eksisterende erhvervsejendomme // Transformation capacity in existing commercial properties

17 projects – five themes

Better use of the single family

Big potential in the existing houses - singles or couples without children occupying a part of the existing building stock

What are the architectural/structural, social, cultural, regulatory, financial etc. barriers and potentials for sharing m2 or dividing/partition of house? And how might we address them?

How might we support housing / moving chains to free up single family houses for families?

Establishing roof top housing

There is an underutilised potential in the roof space/attics in existing urban building stock.

What are the structural, regulatory and financial barriers and potentials for establishing roof top housing and how might we address them?

Future-proofing the social housing sector

Addressing the challenge of vacancy in the social housing sector.

How might we convert traditional social housing homes to cohousing communities?

Transformation of commercial, office, and public service buildings

What are the regulatory and proces-related barriers and potentials for transformation in general and how might we address them?

Cross-cutting themes

Focusing on the business / investment case of transformation as a potential barrier.

How might we elaborate and develop a more holistic business case for transformation?

AALBORG

PLAN 22+

NielsensArk Arkitekt m.a.a. Niels Christian Nielsen

Building owners

Dansk Design Center

ARK OIE



00 Dm

Social housing associations

Nykredit

Almenr

Jakob bendix

Find out more here:

→ www.bevar-mere.dk

The road to net zero

Anna Denell, Chief Sustainability Officer

"Future-proof cities for

everyone, where people and

companies thrive"

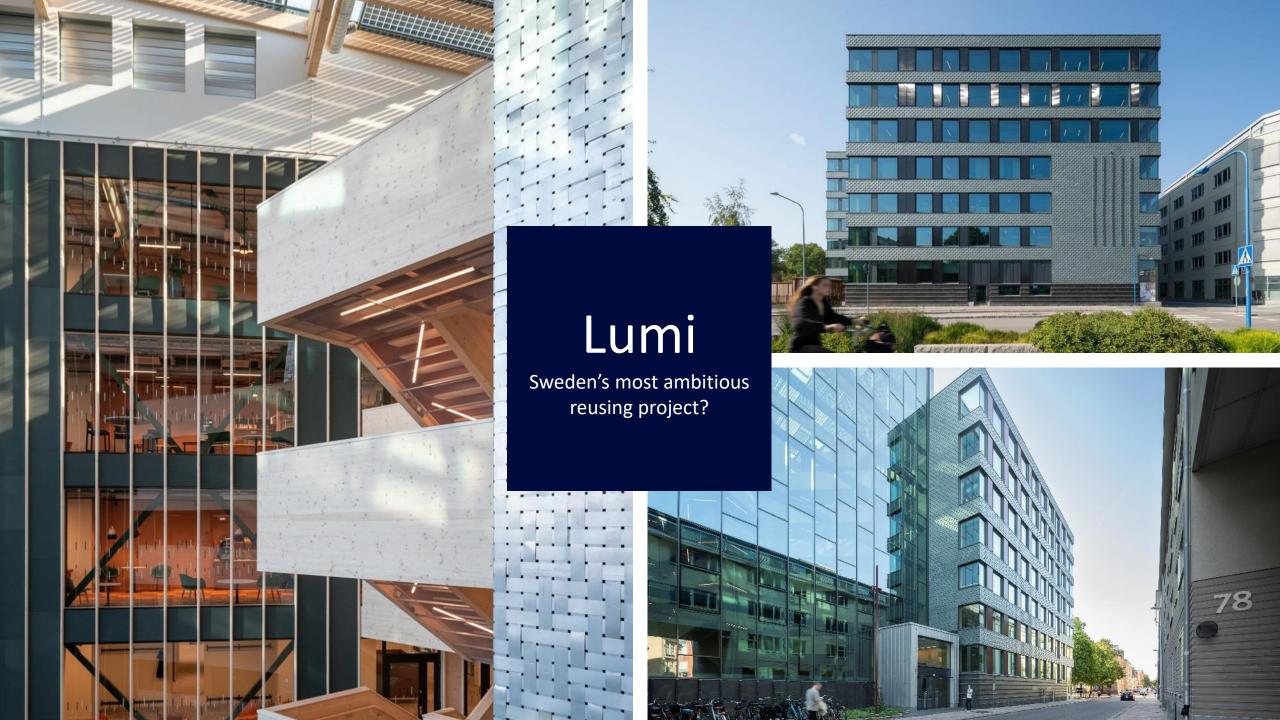
Environmenta responsibility

Social responsibility

Financial responsibility

Net Zero by 2030 - throughout the whole value chain

- Construction material
- Waste
- Transportation
- Energy consumption at construction sites


- Energy consumption
- Leakage of refrigerants
- Company transportation



- Electricity consumption
- Commuting
- Waste

Vasakronan